23

~ => Introduction

Inagine that you are in a Space Sciences class, and your professor tries to
convince you that the statment, "If there is life on Mars, it must be very

primitive" is true. He might make a statement like, "Suppose there is life
on Mars," and go on to talk about the environment it would have to endures

its possible effects on the planet, and so forth. For the next few minutes
he would go on talking as if a recent space probe had discovered life, and

convince you that the life must be very primitive. But when the class was

over, you wouldn't rush over to your friends and ask them if they had heard
that life was discovered on Mars. You accepted the assumption for the sake
of discussion, and when the discussion was over, the assumption was

dropped.

Here is the template for the => introduction rule:

P => Q BY INTRO,
PROOF ; :
[ASSUME P;]

Q san
QED;

Brackets ([]) in a template indicate an optional part. When you are using
the => introduction template, you don't have to write out the ASSUME P part
if you don't want to. As before, the vertical dots indicate where proof
lines go, and the horizontal dots stand for any kind of justification.

The hypothesis to the => introduction rule is a little different from oth-
ers we have seen. Instead of certain assertions, it requires a whole
proof. This proof has a special part called the assumption. Any proof
lines you write between the PROOF and the QED can use P as a hypothesis.
1f, by assuming P, you can write out a proof of Q, then P => Q must also be
true. Each line in the proof can get its hypotheses from any previous
proof line, or from the ASSUME line (even if you decided not to write T
The proof can't use P => Q as a hypothesis though; that hasn't been proved
yet. Here is an example of the use of the => introduction rule:

I<=J => I+1<=J+1 BY INTRO,
PROOF 3

ASSUME I<=J;

1<=1 BY ARITH;

I+]1 <= J+1 BY ARITH, I<=J, +, 1<=13
QED; '

Proof lines written after the QED can get their hypotheses from any lines
written before the PROOF (including the P => Q line) or after the QED.
However, a line that comes after the QED cannot reach inside, between the
PROOF and QED for a hypothesis. That would be like after Space Science
class telling your friends there is life on Mars,

24

RIGHT

QED |
WRONG |WRONG

QED
Figure 3 Hypotheses and Proof Blocks

The reason we write the hypothesis-proof for the => introduction rule after
the line we are trying to prove is for ease in reading. Once we see that
the prover wishes to show an implication, we can read the following lines
keeping in mind the assumption being made (P) and the conclusion we are
trying to reach (Q).

Any kind of proof whatsoever can be written where the vertical dots are in
the template, even a proof that uses the => introduction rule. Here is an
example of such a use.

I<=J => (J<=I => I=J) BY INTRO,
PROOF 3
ASSUME 1<=J;
J<=1 => I=J BY INTRO,
PROOF ;
ASSUME J<=I13;
I=J BY ARITH, I<=J, J<=I3;
QED;
QED3

The part of the proof between a PROOF and its corresponding QED is called a.
"proof" block. The above proof blocks are said to be "nested," because one
is inside the other. The rule for reaching back and getting hypotheses in
the presence of nested proof blocks is that you can always reach around a
proof block, but you can never reach into one. Figure 3 shows examples of

25

right and wrong ways of reaching back for hypotheses. If a proof line is
allowed to reach back to a previous proof line for a hypothesis, the asser-
tion on the previous line is said to be Maccessible™ to the later line.
Later we will see more restrictions on which assertions are accessible to
proof lines.

The notion of assumptions and proof blocks alters our idea of the meaning
of assertions in the proofs we write. For assertions at "top level™ (i.e.
not within any proof block) the meaning is unchanged from that described in
section I. But in general we must say of an assertion in our proofs that
if all the assumptions accessible to it are true, then its meaning as
described in section I is true. (Of course, top level assertions have no
assumptions.) The meaning of an assertion with free variables is that any
assignment of values to those free variables that makes all accessible
assumptions true will also make the assertion itself true,

The Cases Rule

The | elimination rule is also called the CASES rule. Here is the idea
behind the CASES rule. Suppose you know that Q or R is true, though you
don't know which one, and you want to show that P follows. If you first
assume Q, and show that P follows, and then assume R, and show that P fol~-
lows, then P must be true, Here is the template for the CASES rule.

P BY CASES, Q|R,
PROOF 3
CASE Q3

QED;

The assertion Q|R is a hypothesis of this rule that has to be written out,
just like the hypotheses of the ARITH rule. Each CASE line introduces an
assumption, just like the ASSUME line of the => introduction rule. The
part of the proof between CASE Q and CASE R is a proof block, and so is the
part of the proof between CASE R and QED. The same accessibility rules
that apply to the => introduction proof blocks apply for these proof blocks
as well: it is all right to reach around a proof block for a hypothesis,
but you are not allowed to reach into a proof block.

The above template is for a hypothesis with a two-place |. There are simi-
lar templates for an | operator with three or more places. You simply
include a CASE line and a proof block for each operand. If you applied the
| elimination rule to P | Q | R, you would have three cases: P, Q, and R.
However, if you applied the rule to the hypothesis (P | Q) | R, you would
have only two cases: P | Q and R, The cases must be split in the same
manner as they appear in the hypothesis,

26

ABS(I)>J => I>J | -I>J BY INTRO,
PROOF 3
ASSUME ABS(I) > J;
C: I<=0 | I>0 BY ARITH; /# SPLITTING #/
I>J | -I>J BY CASES, C,
PROOF 3
CASE 1 <= 03
I<=0 => ABS(I) = -I BY FUNCTION, ABS(I);
ABS(I) = -I; /# => ELIMINATION #/

=1 >833 /# SUBSTITUTE INTO ABS(I) > J #/
1>J | -1>J; /# | INTRODUCTION #/
CASE I>0;

0 < I BY ARITH, I > 03 /# COMPARISON #/
0 <= I-1 BY ARITH, 0 < I; /# COMPARISON #/
0 <= I-1+1 BY ARITH, 0 <= I-13; /# WEAKENING #/
I-1 = I+(-1) BY ARITH; /# SUBTRACTION #/
I-1+1 = I+(-1)+1; /# SUBSTITUTION #/
I+(-1)+1 = I+((-1)+1) BY ARITH; /# ASSOCIATIVITY #/
I-1+1 = I+((-1)+1); /# SUBSTITUTION #/
-1+1 = 0 BY ARITH; /# COMPUTATION #/
I-1+41 = I+0; /# SUBSTITUTION #/
I+0 = I BY ARITH; /# IDENTITY #/
I-1+1 = I3 /# SUBSTITUTION #/
0 <='T; /# SUBSTITUTION #/
I >= 0 BY ARITH, 0 <= I3 /# COMPARISON #/

I>=0 => ABS(I)=I BY FUNCTION, ABS(I);
ABS(I) = I; /# => ELIMINATION #/
I A /# SUBSTITUTE INTO ABS(I) > J #/
TSR [R=T>d8 /# | INTRODUCTION #/
QED;
QED;

Figure 4 A Sample Proof

An Example

We now have seen enough rules to write out a proof of an (at least
slightly) interesting assertion, which appears in Figure 4. The parts
enclosed in /# and #/ are not part of the proof; they are there only to
indicate which template has been used. Note the C: that is put before the
conclusion of the proof line on the fourth line of the proof. When a vari-
able is followed by a colon, it is called a "]abel™, A label can be put
before an assertion that is the conclusion of a proof lime, or it can be
put before the assumption on an ASSUME or CASE line. On subsequent lines,
whenever that variable is writtem, it means "insert the assertion labeled
by this variable here". There is such a use of the label C on the fifth
line of the proof.

The amount of work expended to get I>=0 from I>0 is intimidating. However,
we will soon learn about some short cuts that can be used to reduce that
deduction to one line,

r————T

27
'0'B introduction '0'B elimination ~Introduction
P oese '0°'Beon ~P BY INTRO,
. . PROOF 3
. . [ASSUME P;]
*Poies 23 .
. "0'5...

QED;
Figure 5 Rules using '0'B

Rules for *0'B

Figure 5 shows the introduction and elimination rules for '0'B. When first
encountered, '0'B introduction sounds like a crazy idea. How can we prove
'0'B, an assertion that is, by definition, false? Remember though, that we
understand that an assertion in a proof is true only if all of the assump-
tions accessible to it are true. If the collection of assumptions accessi-
ble at some point contains two of the form P and P, then it can never hap-
pen that every member of the collection is true., We can therefore
correctly assert even '0'B at that point. It should be clear , in fact,
that we can justifiably assert anything at such a point, since the meaning
of the assertion (in the sense of section I) is irrelevant. This observa-
tion is exactly the '0'B elimination rule.

The best way to understand the use of '0'B is to realize that proving it is
the formal way of saying that one has made an inconsistent set of assump-
tions. If it is then necessary to draw the conclusion of an implication or
CASE, it may be asserted without further proof. The fact that '0'B has
been concluded shows that the implication is vacuous, or the CASE impossi-
ble.

There is another way of using the derivation of '0'B to gain infomation
about hypotheses. Suppose we have proven A|~A for some assertion A. Then
if we assume ~A and reach a contradiction, we know that A must be true by
cases. The form of this argument is:

A BY CASES, A|™A,
PROOF 3
CASE ~Aj
I(.)l 3

L]
CASE A;
QED;

28

~(P&Q) => (~P | ~Q) BY INTRO,
PROOF 3
ASSUME ~(P&Q) 3
(~P | ~Q) BY CONTRA,
PROOF 3
ASSUME ~(~P | ~Q)s
~P BY INTRO,

PROOF 3
ASSUME P; ~~(1=I) BY INTRO,
~Q BY INTRO, PROOF 3
PROOF 3 ASSUME ~(I=1);
ASSUME Q3 T =T
P & Q3 0B
T0'B3 QED;
QED;
~P | Q:
'0'3;
QED;
“P | Q;
'O'B;
QED3
QED;

Figure 6 Using the 7 Introduction and Contradiction Rules
Such a form is abbreviated by the CONTRADICTION rule:

A BY CONTRA,
PROOF 3
[ASSUME ~A;]

'G'B
QED;

Note that this is more than just an abbreviation of the previous form. It
has no reference to the assertion A|~A, and does not need it as a
hypothesis. Classical logic makes the assumption of A|™A for every asser-
tion, and so proof by contradiction is a rule of classical logic. However,
there are many assertions for which we cannot prove A|™A in PL/CV without
using -this rule. Systems of logic which do not assume A|~A for every
assertion are called comstructive. PL/CV is a constructive system as long
as the rule of contradiction is not used.,

The difference between constructive and non-constructive systems and their
relevance is an issue of mathematical philosophy. It seems that all the
mathematics needed for programs can be done using constructive logic, and
we will not use the rule of contradiction in this manual. It is included
for those who may want to do classical mathematics in PL/CV. Figure 6
shows an example of the use of each of these rules. Proofs that use the
contradiction rule are often convoluted, and the one in Figure 6 is no
exception.

29

ALL introduction ALL Elimination
ALL X type. P BY INTRO, P{E//1} BY ALLEL, ALL I type. P, E;
PROOF 3

[ARBLITRARY] X type;]

P ose
QED;
Figure 7 Introduction and Elimination Rules for ALL

Rules for ALL

Figure 7 shows templates for the ALL introduction and elimination rules.
Let us first consider the ALL introduction rule. When you are using the
rule, substitute either FIXED or BIT for "type™ in the template. Recall
that brackets in a template mean that the item is optional. The nested
brackets indicate that we can use ARB or ARBITRARY, or leave the line out
altogether. You may substitute any variable for X in the template.
Although it isn't shown explicitly in the template, the assertion you sub-
stitute for P will almost certainly contain the variable you substitute for
X, The part of the proof between the PROOF and QED is a proof block, and
follows all the normal accessibility rules.

The simplest way of explaining the ALL introduction rule is with an exam-
ple. Suppose we wish to prove the assertion ALL J FIXED, J-1 < J. An
informal argument would be, "Let J be any FIXED value. No matter what J
is, we know by the rules of arithmetic that J-1 is less than J. This argu-
ment works for any J."™ The PL/CV version of this argument is given in fig-
ure 8., The purpose of the ARBITRARY line is to introduce a new variable
into the proof., We will call these variables Mlogic variables.," Every
free variable in each assertion we write must be a logic variable. We can
think of ARBITRARY lines as assumptions which are required by any proof
lines that use the logic variables they introduce, and which are true for
any value of those variables, Just as with any other hypothesis, a proof
line may not reach into a proof block to get an ARBITRARY line for its free
variables, Alternatively, we can think of an MARBITRARY J" line as a kind
of quantifier which says that the following block is a correct proof for
any value substituted for J, We can then think of the proof block as the
scope of the ARBITRARY line, in which all free occurrences of J are bound
by the "quantifier".

This latter interpretation belps us understand a small confusion that can
arise. What if someone tries to introduce the logic variable J at a point
where J is already introduced? This problem is entirely equivalent to
understanding what an assertion like

ALL J FIXED.((J<0|J>=0) & ALL J FIXED.J<J+l)

means, and in fact would occur in the proof of this assertion. A quantif-
ier binds all free occurrences of its variable inside its scope. The

30

ALL J FIXED. J-1<J BY INTRO,

PROOF 3
ARBITRARY J FIXED;
J=J;
J<=J BY ARITH, J=J; /# weakening #/
1<=1 BY ARITH; /# computation #/
J-1<=J-1 BY ARITH, J<=J,-,1=1; /# relation subtraction #/
J-1<J BY ARITH, J-1<=J-13; /# comparison #/
QED;

Figure 8. Example of ALL-introduction rule

meaning of the above assertion is: any value for J will make J<0|J>=0 true
and ALL J FIXED.(J<J+1) is true. Note that this meaning does not explicitly
involve substituting for the J's bound by the inner quantifier. That comes
up only in determining the truth of that innermost quantified assertion.
Similarly, an ARBITRARY "quantifier" binds only the free occurrences of its
variable inside its scope. Therefore, of all the ARBITRARY lines which are
accessible to some occurrence of a logic variable, it will be that of the
smallest or innermost proof block which binds it.

This situation only rarely happens in actual proofs (usually long ones).
It can always be avoided by careful choice of variable names. (Remember
that ALL J FIXED,J<J+]l means the same thing as ALL FOO FIXED.FO0O<F00+1.)
Nevertheless, to make sure our proofs are correct in the cases where it
does happen, we must add the following restriction to the accessibility
rules: if point A is inside a proof block with an MARBITRARY X type" line,

then no assertion containing free X outside of that block is accessible
from A.

Example:

ALL J FIXED. J-1<J BY INTRO,
PROOF 3
ARB J FIXED;

J=1<] o aa
QED;
J-1 <= J BY ARITH, J-1<J;

If this section of proof is not inside a proof block with an

ARBITRARY J FIXED line, then the bottom line is incorrect, since it has no
accessible introduction of its free variable. If there is such an enclos-
ing block, then the inner proof of J-1<J cannot use as hypotheses any
assertions with free J that come from outside (because in a sense, it is a
"different™ J inside this proof block).

It now should be clear how to find out the type of any variable in a proof.
If the variable is bound, look at the quantifier to which it is bound. If
the variable is free, then look at the ARBITRARY line that introduced it.

31

(The ARBITRARY line is optional; if it weren't written, just use the ARBI-
TRARY line you would have to write if you were going to write ome.) If you
think of the ARBITRARY line as a quantifier then every variable we write in
our proofs is bound, and its type is determined by its binding.

All the sample proofs shown so far have been incomplete, since they have
all contained free variables and no ARBITRARY lines. They have actually
been the parts that go inside a proof block of an ALL introduction rule.

Next, look at the ALL elimination rule. In the ALLEL template, I stands
for a variable, and E stands for any expression of the appropriate type.

The idea behind the ALL elimination rule is quite simple. Suppose we have
proved the assertion ALL J FIXED. J-1 < J, Then we know that the assertion
J-1 < J holds for any fixed value given to J. The ALL elimination rule
lets us prove that assertion for any particular expression, such as K+2:

(K+2)-1 < K+2 BY ALLEL, ALL J FIXED, J-1 < J, K+2;

Rules for SOME

Figure 9 contains the templates for the SOME introduction and elimination
rules. Both these templates use the new substitution notation introduced
with the ALL elimination rule, In the introduction template, I stands for
a variable, and E for any expression of the same type. In the elimination
rule, both I and J stand for variables.

Suppose we wish to prove as assertion like SOME K FIXED, K>5, This asser-
tion says that there is a FIXED value greater than 5. People from Missouri
will like the SOME introduction rule; in essence, it says "show me". In
this case, a value for K that will work is 6. The proof is:

6 > 5 BY ARITH;
SOME K FIXED. K>5 BY INTRO, 6;

On the other hand, suppose we have a proof that SOME K FIXED. K*K=J, This
assertion states that J is a perfect square. The SOME elimination rule
lets us assign a name for "the square root of J", and use that name in sub-
sequent proof lines. (This name must not be the same as one from the ARBI-
TRARY line of the smallest proof block containing it, if there is one, nor
may it be the same as one used by a previous CHOOSE line in the same
block.) For example:

SOME K FIXED. K*K=J ...
CHOOSE ROOTJ FIXED WHERE ROOTJ*ROOTJ = J;

The CHOOSE line introduces a new logic variable in the same way that the
ARBITRARY line does. Subsequent proof lines can use ROOTJ as a free vari-
able, and ROOTJ*ROOTJ = J as a hypothesis. Naturally, proof lines cannot
reach into a proof block to get at ROOTJ.

As with ARBITRARY lines, the CHOOSE line can be thought of as a quantifier.
It means that any value for ROOTJ that makes the WHERE assertion true will
make the rest of the proof block correct. The scope of a CHOOSE line is

32

SOME introduction SOME elimination
P{E//1} «.. SOME I type. P ...
SOME I type. P BY INTRO, E; CHOOSE J type WHERE P{J//1};

Figure 9 Introduction and Elimination Rules for SOME

not the whole proof block, as with ARBITRARY lines, but only that part of
the block that follows the CHOOSE., Of all the CHOOSE ROOTJ or ARBITRARY
ROOTJ lines that are accessible to an instance of ROOTJ, it is the one of
smallest (innermost) scope that binds it. Assertions with free occurrences

of ROOTJ are not accessible to any point that must "reach through" such a
scope.

Extended Quantifiers

There are some abbreviations you can use when writing quantifiers. Rather
than .

ALL I FIXED. ALL J FIXED. (I<J => I+1<J+l)
you can write

ALL (I, J) FIXED. (I<J => I+1<J+1)
instead. These two assertions mean the same thing, in the same way that
I<J<K means the same as I<J & J<K & K<J, You can collapse together a
string of any number of ALLs, or a string of any number of SOMEs, but not a
mixed string. For example, in

ALL I FIXED., SOME J FIXED. I<J

there is no way to collapse the quantifiers. The introduction and elimina-
tion rules can be used on extended quantifiers, Use the examples in figure
10 as a guide.

All introduction:

ALL (X, Y) FIXED. (X<=Y | Y>X) BY INTRO,
PROOF ;

ARBITRARY (X, Y) FIXED;

X<=Y | Y>X BY ARITH; /# splitting #/
QED;

ALL elimination:

X<=X+1 & X+1<=Z => X<=Z BY ALLEL,
ALL (I, J, K) FIXED, (I<=J & J<=K => I<=K), X, X+l, Z3

